Stainless-Steel Titen HD Installation Information¹

Stainless-Steel Titen HD® Design Information — Concrete

Chamadariatia	Combal	Units				Non	ninal An	chor Di	ameter	(in.)			
Characteristic	Symbol	Units	1	/4	3,	/8		1/2		5,	/8	3,	V ₄
Installation Information													
Nominal Diameter	d _a	in.		/4	3	3/8		1/2		5/8		3	3/4
Drill Bit Diameter	d _{bit}	in.		/4	3	3/8		1/2			⁵ ⁄8		3/4
Minimum Baseplate Clearance Hole Diameter ²	d _C	in.		3/8	1	/2		5/8			3/4	-	7/8
Maximum Installation Torque ³	T _{inst,max}	ftlbf	N	/A	4	.0		70		8	35	1	50
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	1:	25	15	50		345		34	45	380	
Minimum Hole Depth	h _{hole}	in.	21/4	31/8	2¾	3½	3	3/4	41/2	41/2	6	6	6¾
Nominal Embedment Depth	h _{nom}	in.	21/8	3	2½	31/4	3	1/4	4	4	5½	5½	61/4
Effective Embedment Depth	h _{ef}	in.	1.27	2.01	1.40	2.04	1.	86	2.50	2.31	3.59	3.49	4.13
Critical Edge Distance	Cac	in.	3	3	41/2	5½	(3	5¾	6	6%	6¾	7%
Minimum Edge Distance	C _{min}	in.	1½	1½	13⁄4	13/4	13/4	21/4	13⁄4	13⁄4	13⁄4	13⁄4	13/4
Minimum Spacing	S _{min}	in.	1½	1½	3	3	4	3	3	3	3	3	3
Minimum Concrete Thickness	h _{min}	in.	3½	4%	4	5	ļ	5	61/4	6	81/2	8¾	10
		Anchor	Data										
Yield Strength	f _{ya}	psi	88,	000	98,	400	91,200		83,200		92,	000	
Tensile Strength	f _{uta}	psi	110	,000	123	,000		114,000)	104,000		115,000	
Minimum Tensile and Shear Stress Area	A _{se}	in.²	0.0	430	0.0)99		0.1832		0.2	276	0.4	114

For **SI**: 1 in. = 25.4 mm, 1 ft.-lbf = 1.356 N-m, 1 psi = 6.89 kPa, 1 in.² = 645 mm², 1 lb./in. = 0.175 N/mm.

 β_{uncr}

 β_{cr}

lb./in.

lb./in.

139,300

103,500

807,700

113,540

269,085

93,675

111,040

94,400

102,035

70,910

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

Axial Stiffness in Service Load Range — Uncracked Concrete

Axial Stiffness in Service Load Range — Cracked Concrete

^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.

^{2.} The minimum hole size must comply with applicable code requirements for the connected element.

^{3.} T_{inst,max} applies to installations using a calibrated torque wrench.

Stainless-Steel Titen HD Tension Strength Design Data^{1,5}

Characteristic	Symbol Units	Nominal Anchor Diameter (in.)										
Characteristic	Symbol	Units	!	/4	3,	/ ₈	1/2		5,	/ ₈	3/4	
Anchor Category	1, 2 or 3	_	;	3					1			
Nominal Embedment Depth	h _{nom}	in.	21/8	3	21/2	31/4	31/4	4	4	5½	5½	61/4
Steel Strength in Tension (ACI 318-19 17.6.1, ACI 318-14 17.4.1 or ACI 318-11 Section D.5.1)												
Tension Resistance of Steel	N _{sa}	lbf	4,7	730	12,	177	20,	885	28,	723	47,	606
Strength Reduction Factor — Steel Failure ²	φ _{sa}	_					0.	75				
Concrete Breakout Strength i	Concrete Breakout Strength in Tension (ACI 318-19 17.6.2, ACI 318-14 17.4.2 or ACI 318 Section D.5.2)											
Effective Embedment Depth	h _{ef}	in.	1.27	2.01	1.40	2.04	1.86	2.50	2.31	3.59	3.49	4.13
Critical Edge Distance	Cac	in.	3	3	41/2	5½	6	5¾	6	6%	6¾	73/8
Effectiveness Factor — Uncracked Concrete	K _{uncr}	_	24	24	27	24	27	24	24	24	27	27
Effectiveness Factor — Cracked Concrete	k _{cr}	_	17	17	21	17	17	17	17	17	17	21
Modification Factor	$\Psi_{c,N}$	_						1				
Strength Reduction Factor — Concrete Breakout Failure ³	ϕ_{cb}	_	0.	45				0.	65			
Pullout Strength in Tension	on (ACI 318	-19 17.6	6.3, ACI 3	18-14 17	7.4.3 or <i>A</i>	CI 318-1	1 Sectio	n D.5.3)				
Pullout Resistance Uncracked Concrete (f' _c = 2,500 psi)	N _{p,uncr}	lbf	1,7255	3,5508	N/A ⁴	N/A ⁴	N/A ⁴	N/A ⁴	3,8205	9,0807	N/A ⁴	N/A ⁴
Pullout Resistance Cracked Concrete (f' _c = 2,500 psi)	N _{p,cr}	lbf	695 ⁵	1,2255	1,675⁵	2,415 ⁵	1,9955	N/A ⁴				
Strength Reduction Factor — Pullout Failure ⁶	ϕ_p	_	0.	45	0.65							
Tension Strength for Seismic Appli	cations (AC	I 318-19	17.10.3	, ACI 318	3-14 17.2	.3.3 or A	CI 318-1	1 Section	n D.3.3.3)		
Nominal Pullout Strength for Seismic Loads (f'c = 2,500 psi)	N _{p,eq}	lbf	695 ⁵	1,2255	1,6755	2,415 ⁵	1,9955	N/A ⁴				
Strength Reduction Factor for Pullout Failure ⁶	ϕ_{eq}	_	0.	45				0.	65			

For **SI**: 1 in. = 25.4 mm, 1 ft.-lbf = 1.356 N-m, 1 psi = 6.89 kPa, 1 in.² = 645 mm², 1 lb./in. = 0.175 N/mm.

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
- 2. The tabulated value of φ_{sa} applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 and ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2 are used, as applicable. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4(b), as applicable.
- 3. The tabulated values of ϕ_{cb} applies when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 and ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2 are used, as applicable, are used and the requirements of ACI 318-19 Section 17.5.3 and Table 17.5.3(b), ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations where complying reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-19 Table 17.5.3(b), ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B.
- 4. N/A denotes that pullout resistance does not govern and does not need to be considered.
- 5. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by $(f_c/2,500)^{0.5}$.
- 6. The tabulated values of ϕ_p or ϕ_{eq} applies when both the load combinations of ACI 318-19 Section 5.3, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-19 Section 17.5.3 and Table 17.5.3(b), ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318-11 D.4.4(c) for Condition B.
- 7. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by (f'c/2,500)0.4.
- $8. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by <math>(f'_c/2,500)^{\circ 3}$.

Stainless-Steel Titen HD Shear Strength Design Data¹

BC	→		LW
	502	47.50	L

Characteristic	Symbol Units Nominal Anchor Diameter (in.)												
Glidi deletistic	Syllibul	UIIILS	1	1/4 3/8		1/2		5/8		3/4			
Anchor Category	1, 2 or 3	_	;	3					1				
Nominal Embedment Depth	h _{nom}	in.	21/8	3	2½	31/4	31/4	4	4	5½	5½	61/4	
Steel Strength in Shear (ACI 318-19 17.7.1, ACI 318-14 17.5.1 or ACI 318-11 Section D.6.1)													
Shear Resistance of Steel	V _{sa}	lbf	2,2	285	3,790	4,780	6,024	7,633	10,422	10,649	13,710	19,161	
Strength Reduction Factor — Steel Failure ²	ϕ_{sa}	_					0.	65					
Concrete Breakout Strength in Shear (ACI 318-19 17.7.2, ACI 318-14 17.5.2 or ACI 318-11 Section D.6.2)													
Nominal Diameter	da	in.	0.2	250	0.3	375	0.5	500	0.6	625	0.7	0.750	
Load Bearing Length of Anchor in Shear	I _e	in.	1.27	2.01	1.40	2.04	1.86	2.50	2.31	3.59	3.49	4.13	
Strength Reduction Factor — Concrete Breakout Failure ³	$\phi_{\it cb}$	_			1		0.	70				Į.	
Concrete Pryout Strength	in Shear (A	CI 318-1	9 17.7.3	, ACI 318	-14 17.5.	3 or ACI	318-11 S	Section D	.6.3)				
Coefficient for Pryout Strength	K _{CP}	_			1.0			2.0	1.0		2.0		
Strength Reduction Factor — Concrete Pryout Failure ³	ϕ_{cp}	_					0.	70					
Shear Strength for Seismic App	lications (A	ACI 318-	19 17.10	.3, ACI 31	8-14 17.	2.3.3 or <i>l</i>	ACI 318-1	11 Sectio	n D.3.3.3)			
Shear Resistance — Single Anchor for Seismic Loads (f' _C = 2,500 psi)	V _{sa,eq}	lbf	lbf 1,370 1,600 3,790 4,780 5,345 6,773 9,367 9,367 10,4					10,969	10,969				
Strength Reduction Factor — Steel Failure ²	ϕ_{eq}	_		-			0.	65					

For **SI**: 1 in. = 25.4mm, 1 lbf = 4.45N.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-19 Chapter 17, ACI 318-14 Chapter 17 or ACI 318-11 Appendix D, as applicable.
- 2. The tabulated value of ϕ_{sa} and ϕ_{eq} applies when the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 or ACI 318-14 Section 5.3, or ACI 318-11 Section 9.2, as applicable, are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} and ϕ_{eq} must be determined in accordance with ACI 318-11 D.4.4(b).
- 3. The tabulated values of ϕ_{cb} and ϕ_{cp} apply when both the load combinations of Section 1605.1 of the 2021 IBC, Section 1605.2 of the 2018, 2015, 2012, and 2009 IBC, ACI 318-19 or ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-19 Section 17.5.3 and Table 17.5.3(b), ACI 318-14 Section 1703.3, or ACI 318-11 D.4.3(c) for Supplementary reinforcement are not present (Condition B) are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations where complying reinforcement is verified, the ϕ_{cb} and ϕ_{cp} factors described in ACI 318-19 Table 17.5.3(b), ACI 318-14 17.3.3(c), or ACI 318-11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} shall be determined in accordance with ACI 318-11 D.4.5(c) for Condition B.

Stainless-Steel Titen HD Screw Anchor Setting Information for Installation on the Top of Concrete-Filled Profile Steel Deck Floor and Roof Assemblies^{1,2,3,4}

	_	_	
IBC	1	→	

Design Information	Symbol	Units	Nominal Anchor Diameter (in.)					
Design information	Зунион	Ullits	1/4	3/8	1/2			
Nominal Embedment Depth	h _{nom}	in.	21/8	2½	31⁄4			
Effective Embedment Depth	h _{ef}	in.	1.27	1.40	1.86			
Minimum Concrete Thickness ⁵	h _{min,deck}	in.	21/2	31⁄4	3¾			
Critical Edge Distance	C _{ac,deck,top}	in.	3	4½	7½			
Minimum Edge Distance	C _{min,deck,top}	in.	1½	13⁄4	13⁄4			
Minimum Spacing	S _{min,deck,top}	in.	1½	3	3			

For SI: 1 in. = 25.4 mm, 1 lbf = 4.45 N.

- 1. For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figure 1, the nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , respectively, must be calculated in accordance with ACI 318-19 Section 17.7.2, ACI 318-14 Section 17.5.2 or ACI 318-11 Section D.6.2, using the actual member thickness, $h_{min,deck}$, in the determination of A_{vc} .
- 2. Design capacity shall be based on calculations according to values in the tables featured on pp. 84-85.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is $1 \frac{1}{2}$ " (see Figure 1).
- 4. Steel deck thickness shall be minimum 20 gauge.
- 5. Minimum concrete thickness (h_{min,deck}) refers to concrete thickness above upper flute (see Figure 1).

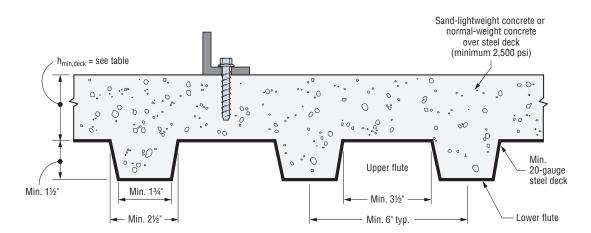


Figure 1. Installation of ¼"-, %"- and ½"-Diameter Anchors in the Topside of Concrete over Steel Deck

Stainless-Steel Titen HD Allowable Tension and Shear Loads in 8" Medium-Weight and Normal-Weight Grout-Filled CMU

Size	Drill Bit	Minimum Embedment	Critical Edge	Minimum Edge	Critical Spacing					
in.	Diameter	Depth	Distance C _{crit}	C Distance	Distance Distance	Coming Distance Tension Load		n Load	oad Shear Load	
(mm)	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	
	Anchor Installed in the Face of the CMU Wall (See Figure 1)									
1/4 (6.4)	1/4	2½ (64)	4 (102)	11/4 (32)	4 (102)	1,325 (5.9)	265 (1.2)	1,400 (6.2)	280 (1.3)	
3/8 (9.5)	3/8	2¾ (70)	12 (305)	4 (102)	8 (203)	2,125 (9.5)	425 (1.9)	2,850 (12.7)	570 (2.5)	
½ (12.7)	1/2	3½ (89)	12 (305)	4 (102)	8 (203)	3,325 (14.8)	665 (3.0)	4,950 (22.0)	990 (4.4)	
5/8 (15.9)	5/8	4½ (114)	12 (305)	4 (102)	8 (203)	3,850 (17.1)	770 (3.4)	4,925 (21.9)	985 (4.4)	
3/4 (19.1)	3/4	5½ (140)	12 (305)	4 (102)	8 (203)	5,200 (23.1)	1,040 (4.6)	4,450 (19.8)	890 (4.0)	

^{1.} The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

8. Although the ¼" stainless steel Titen HD is not part of the evaluation report, we still tested the ¼" screw per the appropriate AC.

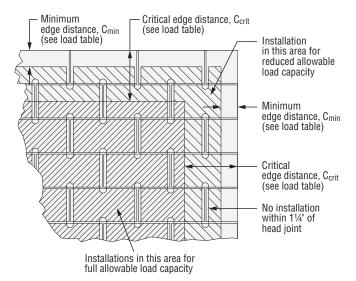


Figure 1. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU

^{2.} Values for 8"-wide, medium-weight and normal-weight concrete masonry units. For %"- to %"-diameter anchors, anchors may be installed in lightweight masonry units.

^{3.} The masonry units must be fully grouted.

^{4.} The minimum specified compressive strength of masonry, f'm, at 28 days is 2,000 psi.

^{5.} Embedment depth is measured from the outside face of the concrete masonry unit.

^{6.} Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.

^{7.} Refer to allowable load-adjustment factors for spacing and edge distance on pp. 89-90.

Stainless-Steel Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

	•		(== = t
IRC	200	286 286	

Cina	Duitt Dia	Minimum	Critial Edge	Critical		8" Hollow CMU Loads Based on CMU Strength										
Size in. (mm)	Drill Bit Diameter in.	Embedment Depth⁴ in. (mm)	Depth⁴	Depth⁴	Depth⁴	Depth⁴	Depth⁴	Depth⁴	Depth⁴			Spacing Distance in.	Tensio	n Load	Shear	Load
(111111)			in. (mm)	(mm)	Ultimate Ib. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)								
	Anchor Installed in Face Shell (See Figure 2)															
3/8 (9.5)	3/8	2½ (64)	12 (305)	8 (203)	925 (4.1)	185 (0.8)	2,250 (10.0)	450 (2.0)								
1/2 (12.7)	1/2	2½ (64)	12 (305)	8 (203)	1,025 (4.6)	205 (0.9)	2,325 (10.3)	465 (2.1)								
5 ⁄8 (15.9)	5/8	2½ (64)	12 (305)	8 (203)	550 (2.4)	110 (0.5)	2,025 (9.0)	405 (1.8)								
3/4 (19.1)	3/4	2½ (64)	12 (305)	8 (203)	775 (3.4)	155 (0.7)	1,975 (8.8)	395 (1.8)								

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The minimum specified compressive strength of masonry, f'm, at 28 days is 2,000 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 11/4" through 11/4"-thick face shell.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 6. Do not use impact wrenches to install in hollow CMU.
- 7. Set drill to rotation-only mode when drilling into hollow CMU.
- 8. Refer to allowable load-adjustment factors for spacing and edge distance on p. 91.
- 9. Anchors must be installed a minimum of 1½" from vertical head joints and T-joints. Refer to Figure 2 for permitted and prohibited anchor installation locations.

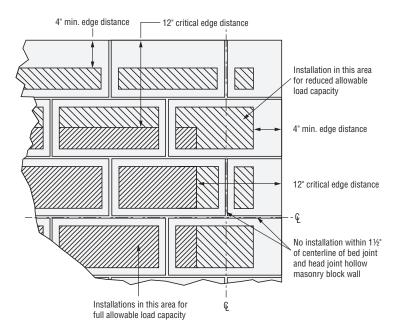


Figure 2. Stainless-Steel Titen HD Screw Anchor Installed in the Face of Hollow CMU Wall Construction

Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Tension (f_c)

0		(0)				
	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	23/4	31/2	41/2	5½
<i>c_{act}</i> (in.)	C _{cr}	4	12	12	12	12
(111.)	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.84	0.80	0.81	1.00	1.00
1.25		0.84				
2		0.88				
3		0.94				
4		1.00	0.80	0.81	1.00	1.00
6		1.00	0.85	0.86	1.00	1.00
8		1.00	0.90	0.91	1.00	1.00
10		1.00	0.95	0.95	1.00	1.00
12		1.00	1.00	1.00	1.00	1.00

See footnotes below.

Edge Distance Shear (f_c) Shear Load Parallel to Edge or End

IBC	→	*

	Dia.	1/4	3/8	1/2	5/8	3/4
_	E	21/2	2¾	31/2	41/2	51/2
c _{act} (in.)	c _{cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.89	0.88	0.56	0.65	0.84
1.25		0.89				
2		0.92				
3		0.96				
4		1.00	0.88	0.56	0.65	0.84
6		1.00	0.91	0.67	0.74	0.88
8		1.00	0.94	0.78	0.83	0.92
10		1.00	0.97	0.89	0.91	0.96
12		1.00	1.00	1.00	1.00	1.00

See footnotes below.

Edge Distance Shear (f_c) Shear Load Perpendicular to Edge or End

(Directed Towards Edge or End)

•		,				
	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	23/4	31/2	4 1/2	5 1/2
c _{act} (in.)	C _{Cr}	4	12	12	12	12
(111.)	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.33	0.93	0.48	0.66	0.69
1.25		0.33				
2		0.51				
3		0.76				
4		1.00	0.93	0.48	0.66	0.69
6		1.00	0.95	0.61	0.75	0.77
8		1.00	0.97	0.74	0.83	0.85
10		1.00	0.98	0.87	0.92	0.92
12		1.00	1.00	1.00	1.00	1.00

^{1.} E = embedment depth (inches).

 $^{2.}c_{act}$ = actual end or edge distance at which anchor is installed (inches).

^{3.} c_{cr} = critical end or edge distance for 100% load (inches).

^{4.} c_{min} = minimum end or edge distance for reduced load (inches).

^{5.} f_c = adjustment factor for allowable load at actual end or edge distance.

 $^{6.} f_{ccr} = adjustment factor for allowable load at critical end or edge distance. <math>f_{ccr}$ is always = 1.00.

^{7.} f_{cmin} = adjustment factor for allowable load at minimum end or edge distance.

^{8.} $f_c = f_{cmin} + [(1 - f_{cmin}) (c_{act} - c_{min}) / (c_{cr} - c_{min})].$

Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads (cont.)

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Away from Edge or End)

IBC T T T

	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	2¾	31/2	4 1/2	5 1/2
c _{act} (in.)	C _{cr}	4	12	12	12	12
()	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.33	0.93	0.48	0.66	0.69
1.25		0.33				
2		0.51				
3		0.76				
4		1.00	0.93	0.48	0.66	0.69
6		1.00	0.95	0.61	0.75	0.77
8		1.00	0.97	0.74	0.83	0.85
10		1.00	0.98	0.87	0.92	0.92
12		1.00	1.00	1.00	1.00	1.00

Spacing Tension (f_s)

Spacing i	ension (i _s)				834 938	Total
	Dia.	1/4	3/8	1/2	5/8	3/4
s _{act} (in.)	Е	21/2	2¾	31/2	4 1/2	5 1/2
	S _{cr}	4	8	8	8	8
(,	S _{min}	2	4	4	4	4
	f _{smin}	0.79	0.81	0.79	0.87	0.78
2		0.79				
3		0.90				
4		1.00	0.81	0.79	0.87	0.78
6			0.91	0.90	0.94	0.89
8			1.00	1.00	1.00	1.00

Spacing Shear (f_s)

-1	(.5)					
	Dia.	1/4	3/8	1/2	5%	3/4
	E	21/2	23/4	3 1/2	4 1/2	5 1/2
s _{act} (in.)	s _{cr}	4	6	8	10	12
()	S _{min}	2	3	4	5	6
	f _{smin}	0.78	1.00	0.86	0.90	0.94
2		0.78				
3		0.89				
4		1.00	1.00	0.86	0.90	0.94
6			1.00	0.93	0.95	0.97
8			1.00	1.00	1.00	1.00

- 1. E = embedment depth (inches).
- $2.s_{act}$ = actual spacing distance at which anchors are installed (inches).
- $3.s_{cr}$ = critical spacing distance for 100% load (inches).
- 4. s_{min} = minimum spacing distance for reduced load (inches).
- $5.f_s = \text{adjustment factor for allowable load at actual spacing distance.}$
- 6. f_{SCT} = adjustment factor for allowable load at critical spacing distance. f_{SCT} is always = 1.00.
- $7. f_{smin}$ = adjustment factor for allowable load at minimum spacing distance.
- 8. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation in 8" Hollow CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.

5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.

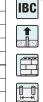
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Shear (f_c)

Edge Distance Tension (f_c)

0		,	0,		
	Dia.	3/8	1/2	5/8	3/4
_	E	21/2	2 1/2	2 1/2	21/2
c _{act} (in.)	c _{cr}	12	12	12	12
(111.)	C _{min}	4	4	4	4
	f _{cmin}	1.00	1.00	1.00	1.00
4		1.00	1.00	1.00	1.00
6		1.00	1.00	1.00	1.00
8		1.00	1.00	1.00	1.00
10		1.00	1.00	1.00	1.00
12		1.00	1.00	1.00	1.00
I F = embe	edment den	th (inches)			

- E = embedment depth (inches).
- 2. c_{act} = actual end or edge distance at which anchor is installed (inches).
- 3. c_{cr} = critical end or edge distance for 100% load (inches).
- c_{min} = minimum end or edge distance for reduced load (inches).
- 5. f_C = adjustment factor for allowable load at actual end or edge distance.
- 6. f_{ccr} = adjustment factor for allowable load at critical end or edge distance. f_{ccr} is always = 1.00.
- 7. f_{cmin} = adjustment factor for allowable load at minimum end or edge distance.
- 8. $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$


	Dia.	3/8	1/2	5/8	3/4
_	Е	2 1/2	2 1/2	21/2	21/2
c _{act} (in.)	Ccr	12	12	12	12
(111.)	Cmin	4	4	4	4
	f _{cmin}	0.78	0.63	0.55	0.51
4		0.78	0.63	0.55	0.51
6		0.84	0.72	0.66	0.63
8		0.89	0.82	0.78	0.76
10		0.95	0.91	0.89	0.88
12		1.00	1.00	1.00	1.00
6 8 10		0.84 0.89 0.95	0.72 0.82 0.91	0.66 0.78 0.89	0.63 0.76 0.88

Spacing Tension (f_s) One Anchor per Cell

	Dia.	3/8	1/2	5/8	3/4
c _{act} (in.)	E	2 1/2	2 1/2	2 1/2	21/2
	c _{cr}	8	8	8	8
(111.)	C _{min}	4	4	4	4
	f _{cmin}	0.72	0.87	0.89	0.70
4		0.72	0.87	0.89	0.70
6		0.86	0.94	0.95	0.85
8		1.00	1.00	1.00	1.00

See notes below.

C-A-2023 @ 2023 SIMPSON STRONG-TIE COMPANY INC.


Spacing Tension (f_s) Two Anchors per Cell

	Dia.	3/8	1/2	5/8	3/4
_	Е	21/2	2 1/2	2 1/2	21/2
c _{act} (in.)	c _{cr}	8	8	8	8
(111.)	C _{min}	4	4	4	4
	f _{cmin}	1.00	1.00	1.00	0.78
4		1.00	1.00	1.00	0.78
6		1.00	1.00	1.00	0.89
8		1.00	1.00	1.00	1.00

Spacing Shear (f_s) One Anchor per Cell

	Dia.	3/8	1/2	5/8	3/4
	Е	2 1/2	2 1/2	2 1/2	21/2
s _{act} (in.)	S _{cr}	8	8	8	8
(111.)	Smin	4	4	4	4
	f _{smin}	0.81	1.00	0.71	0.74
4		0.81	1.00	0.71	0.74
C		0.91	1.00	0.86	0.87
6		0.01	1	0.00	

- 1. E = embedment depth (inches).
- 2. s_{act} = actual spacing distance at which anchors are installed (inches).
- 3. s_{cr} = critical spacing distance for 100% load (inches).
- 4. s_{min} = minimum spacing distance for reduced load (inches).
- $5.\,f_{\rm S}=$ adjustment factor for allowable load at actual spacing distance.
- $6.\,f_{scr}$ = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.
- 7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 8. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

	Dia.	3/8	1/2	5/8	3/4	
	E	21/2	2 1/2	2 1/2	21/2	ָן נ
c _{act} (in.)	c _{cr}	8	8	8	8	
	C _{min}	4	4	4	4	8
	f _{cmin}	1.00	1.00	1.00	0.78	
4		1.00	1.00	1.00	0.78	l
6		1.00	1.00	1.00	0.89	l fi
8		1.00	1.00	1.00	1.00	7

Spacing Shear (f_s) Two Anchors per Cell

	IWO AIIC	nors per	Cell			
		Dia.	3/8	1/2	5/8	3/4
	s _{act} (in.)	E	21/2	21/2	21/2	21/2
		Scr	8	8	8	8
		Smin	4	4	4	4
		f _{smin}	0.76	1.00	0.75	0.75
	4		0.76	1.00	0.75	0.75
	6		0.88	1.00	0.88	0.88
	8		1.00	1.00	1.00	1.00

